4.1 Binomial Expansion

Question Paper

Course	CIEASMaths
Section	4. Sequences & Series
Торіс	4.1 Binomial Expansion
Difficulty	Very Hard

Time allowed:	50
Score:	/40
Percentage:	/100

Question 1

Expand $(3 - 2x)^5$.

[3 marks]

Question 2

Find the coefficient of the term in x^4 in the expansion of $(4 - 3x)^7$.

[3 marks]

Question 3

Given that ${}^{n}C_{3} = 35$ find the value of *n*.

[3 marks]

Question 4a

(a) Use the first three terms, in ascending powers of x, in the expansion of $(3 - 5x)^4$ to find an approximation for $(2.6)^4$.

[5 marks]

Question 4b

(b) Using your calculator, find the percentage error in the approximation from part (a) to the exact value of $(2.6)^4$.

[2 marks]

Question 5

In the expansion of $(m - \frac{1}{4}x)^5$, the coefficient of the x^3 term is -10. Find the possible values of m.

[3 marks]

Question 6

In the expansion of $(3a + \frac{1}{2}x)^6$, the coefficient of the x^3 term is equal to the coefficient of the x^5 term. Find the values of *a*, giving your answers in the form $\frac{\sqrt{m}}{n}$, where *m* and *n* are integers to be found.

[3 marks]

Question 7a

(a) Find the first three terms in the expansion of $(4 - 3x)^9$.

[3 marks]

Question 7b

(b) Given that x is small such that x^3 and higher powers of x can be ignored show that $(3 - 2x^2)(4 - 3x)^9 \approx 786432 - 5308416x + 15400960x^2$

www.mikedemy.com

[3 marks]

Question 8

In the expansion of $(p + qx)^9$, the coefficient of the x^3 term is double that of the x^5 term. Find p in terms of q.

[3 marks]

Question 9

In the expansion of $(1 - 3x)^n$, the coefficient of the x^3 term is -3240. Find the value of *n*.

[4 marks]

Question 10

In the expansion of $(a + bx)^8$, the coefficient of the x^5 term is -870 912. In the expansion of $(a + bx)^{12}$, the coefficient of the x^3 term is -1 557 135 360. Find the possible values of a and b.

[5 marks]